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Abstract
Passing from the CPn = SU(n + 1)/U(n) Lagrangian in Kähler form, to the
Hamiltonian in terms of polar coordinates, this paper describes the solutions of
the CPn Schrödinger equation, whose energy eigenspaces carry the irreducible
representations (λ, 0n−2, λ), λ = 0, 1, 2, . . ., of SU(n + 1) in highest weight
notation. A full account is given of the U(n) structure of these eigenspaces,
and of how this emerges within our solution of the Schrödinger equation by
separation of variables. Explicit solutions of the radial equation, which give
rise to the derivation of spectrum and energy eigenspace details, are presented
for λ = 1, 2, and related to Jacobi polynomials.

PACS numbers: 03.65.Ge, 02.30.Ik, 02.40.Tt

1. Introduction

In this paper, we undertake the solution of the Schrödinger equation

Hq� = E� (1)

of the complex manifold CPn. This requires the extension from n = 2 and CP2 = SU(3)/U(2)

of the treatment given in [1] to CPn for any integer n. Our previous paper gave a brief
indication of our motivation, and of the status of CPn models in general in various areas of
theoretical physics, which is not repeated here.

As stated in [1] the spectrum (see (4)) of the CPn = SU(n + 1)/U(n) Schrödinger
equation is known, having been given in [2]. The latter source also states which irreducible
representations (irreps) of SU(n + 1) are carried by the energy eigenspaces of (1). These, in
highest weight notation, see e.g., [3, 4], are the irreps

(λ, 0n−2, λ) λ ∈ {0, 1, 2, . . .} (2)

here designated the class one irreps of SU(n + 1), in accordance with the definition found in
[5], for which some background discussion is provided in [1].
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For n = 2, the solution of (1) is given in [1] in sufficient detail to make clear exactly how
those irreps of U(2) that occur upon the restriction of the SU(3) irrep (λ, λ) to U(2) may be
seen to exhaust the energy eigenspace of energy

E = 2λ(λ + 2) (3)

for λ = 0, 1, 2, . . .. In this paper, our aim is to extend the treatment from n = 2 and CP2, to
the case of general n, and give the corresponding analysis of the energy eigenspaces of (1),
which have energies

E = 2λ(λ + n) (4)

for λ = 0, 1, 2, . . ..
For the purpose stated, it is necessary to assemble some group theoretic information, not

all of which are immediately available in the literature. First, we prove by group theoretic
means that the class one irreps of SU(n + 1) are given by (2). Second, we determine the
decompositions into irreps of U(n) that arise by their restriction to this subgroup of SU(n+1).
Third, we collect all the results needed for later use regarding the dimensions of irreps of
unitary groups and the eigenvalues of their quadratic Casimir operators.

That we might meet some obstacles in the way of direct generalization from n = 2 to
general n of the methods of [1] can readily be appreciated. The irreps of SU(2) that occur in
the restriction from SU(3) to U(2) of any class one (or indeed any) irrep of SU(3) depend
only on one variable, the total isospin I. But, as our group theoretic studies show, the irreps of
SU(3) that arise by restriction from SU(n+ 1) to U(n) of the class one irreps (2) of SU(n+ 1)

require, for all n � 3, two variables. The implications of this fact manifest themselves in the
separation of variables for (1) for CPn at the point at which the key equation (35) needs to be
employed. As can be seen, this equation involves a non-trivial complication that is absent only
in the degenerate n = 2 case. The resolution (35) of it is, further, essential for the completion
of the separation of variables for n � 3.

Our approach to solving the Schrödinger equation (1) for CPn follows much the same
lines as did [1] for the case n = 2. We use well-known formulae for the Lagrangian L,
Hamiltonian H and the SU(n + 1) transformation properties of the n complex dynamical
variables Kp, p ∈ {1, 2, . . . , n} employed in standard descriptions of CPn models [6, 7].
We define the variables Ki in terms of polar coordinates, write L in terms of them, thereby
exposing the CPn metric tensor gab, where a, b refer to the polar coordinates. This enables us
to calculate explicitly the quantum Hamiltonian of the CPn Schrödinger equation

Hq = − 1
2g−1/2∂ag

1/2gab∂b. (5)

We wish to solve this equation by separation of variables with the aim of reaching a radial
equation, on the basis of which we expect to prove that the U(n) subspaces of its energy
eigenspaces are indeed the ones expected from the decompositions previously deduced for the
SU(n + 1) irreps (2). To achieve this we must calculate explicitly the quadratic Casimir of
SU(n) in terms of our polar coordinates, which of course is expected not to involve the radial
coordinate r. This is necessary to enable us to see exactly its place (see (35)) in our separation
of variables procedure, and to allow the correct form of the final radial equation to emerge.
Even in the first non-trivial case beyond n = 2, CP3 = SU(4)/U(3), where we use polars
defined by

K1 = r cos σ cos 1
2θ eiα

K2 = r cos σ sin 1
2θ eiβ (6)

K3 = r sin σ eiγ
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so that r =
√∑3

p=1(K̄pKp), it is tedious to evaluate the SU(3) generators, and hence the
quadratic Casimir C(2), in terms of the polar angles σ, θ, α, β, γ and their derivatives. We
confine ourselves to supplying full details in this case, but eventually we reach the desired
radial equation for the CPn Schrödinger equation. We verify that it has the expected spectrum
and that its energy eigenspaces have the descriptions in terms of irreps of U(n) expected on
the basis of our group theoretic analysis, and give explicit radial eigenfunctions for all the
states of the irreps (2) of SU(n + 1) for λ = 1 and 2 in terms of Jacobi polynomials. The
results obtained previously [1] for n = 2 conform to the same general patterns.

The content of the remaining sections of this paper is as follows. In section 2, we
discuss irreps of SU(n + 1), especially those of (2), and their U(n) decompositions. Section 3
assembles the data required for later use about the dimension and eigenvalues c2,(n+1) and c2,n

of such irreps. Section 4 describes results for CPn models needed to obtain their Schrödinger
equations, and to embark on solution by separation of variables, giving full detail at some
points only for n = 3. Section 5 then discusses spectrum, energy eigenspace structure and
explicit radial wavefunctions for CPn in general.

2. Class one irreps of SU (n + 1)

We know on general grounds, summarized in section 8 of [1] that the eigenspaces of (1) for
CPn = SU(n + 1)/U(n) are the carrier spaces of the class one irreps of SU(n + 1) relative to
its massive U(n) subgroup. Here we note that a class one irrep of SU(n + 1) is one for which
the restriction to U(n) contains the identity irrep of U(n). Each class one irrep of SU(n + 1)

contains this identity once and once only, which is why the subgroup U(n) is said to be a
massive subgroup of SU(n + 1).

Accordingly, we must identify the class one irreps of SU(n + 1), and assemble the
information regarding them that is required for our use below.

It is convenient to make our deductions in terms of the Young tableaux description
{l1, l2, . . . , ln}, where the li are integers such that l1 � l2 � · · · � ln � 0, but to state our
results for actual use in terms of highest weight notation (λ1, λ2, . . . , λn), where the λi are
integers (�0). We use braces in the former and round brackets in the latter context. The
connection between them is

λi = li − li+1 i = 1, 2, . . . , (n − 1) λn = ln. (7)

We consider first the decomposition of an SU(n + 1) irrep into irreps of U(n) for the
cases n � 3. We have excluded n = 2 at this point only because of a slight degeneracy of the
general notation used when we set n = 2; the actual pattern of the results for n = 2 conforms
in its essentials to the general n treatment. The irrep

{l1, l2, . . . , ln} (8)

of SU(n + 1) contains, see e.g., [8], the irrep

{m1 − mn,m2 − mn, . . . , mn−1 − mn} ⊗ y(n) (9)

of SU(n) ⊗ U(1), where

y(n) = m − n

n + 1
l l =

n∑
k=1

lk m =
n∑

k=1

mk (10)

exactly once for each distinct ordered set of integers

m1,m2, . . . , mn (11)



9692 A J Macfarlane

allowed by the inequalities

l1 � m1 � l2 · · · ln � mn � 0. (12)

This decomposition contains the trivial irrep of SU(n) iff

m1 = l2 = m2 = · · · = mn−1 = ln = mn (13)

and this is associated with y(n) = 0, so that the irrep (8) is of class one, iff

l1 = 2l2. (14)

It follows immediately that the set of class one irreps of SU(n + 1) is given by

(λ, 0n−2, λ) λ = l2 ∈ {0, 1, 2, . . .} (15)

where the notation indicates that there are n − 2 highest weight components equal to zero.
For class one irreps, in Young tableaux notation {2λ, λn−1}, it follows above statements

that their U(n) decompositions are governed by the inequalities

2λ � m1 � λ = m2 = · · · = mn−1 = ln = mn � 0. (16)

Therefore the SU(n) irreps involved are given by

{m1 − mn, λ − mn, . . . , λ − mn} = (m1 − λ, 0n−3, λ − mn) (17)

in association with the y(n) value

y(n) = m1 + mn − 2λ. (18)

There are thus in all (λ + 1)2 such U(n) irreps in the decomposition, with y(n) values such that

λ � y(n) � −λ. (19)

Having reached the results (17) and (18), it becomes clear that we can recast them in a
more convenient and elegant form by defining integers f � 0 and g � 0 via

f = m1 − λ g = λ − mn. (20)

Then, for each pair (f, g) of ordered integers f, g � 0, the decomposition of the irrep (15) of
SU(n + 1) contains exactly once each irrep of U(n) given by

(f, 0n−3, g) y(n) = f − g. (21)

It is just a minor matter of adjusting our notation in the case n = 2 to see that the
corresponding results conform to the pattern just found for general n. The class one irreps
(λ, λ) of SU(3) for λ = 0, 1, 2, . . . , decompose into irreps of U(2), where the SU(2) factor
refers to isospin I, and the U(1) factor to the subgroup with hypercharge generator Y = Y (2).
For each distinct pair of integers (f, g), f, g � 0, we find in the decomposition exactly one
(I, Y ) pair given by

I = 1
2 (f + g) Y = f − g. (22)

Put otherwise, for each integral value of I + 1
2 |Y | such that 0 � I + 1

2 |Y | � λ we get one (I, 0)

pair if Y = 0, and one of each of the pairs (I,±Y ) if Y �= 0.
To clarify the scale of the y(n) eigenvalues, we note that we use SU(n + 1) generators

Xi, 1 � i � N,N = (n + 1)2 − 1 = n(n + 2) such that

[Xi,Xj ] = ifijkXk (23)

and represented in the defining irrep def via Xi �→ 1
2λi , where we use a standard set [9]

of lambda matrices normalized according to Tr λiλj = 2δij . Our two uses of subscripted
lambdas should be easily distinguishable from their contexts.
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The generators Y (n) of the U(1) subgroup of U(n) ⊂ SU(n + 1), whose eigenvalues y(n)

feature in the results (10) and so on are related to the ‘last’ Gell-Mann matrix λN of the family

λN = cn

(
In 0
0 −n

)
cn =

√
2

n(n + 1)
(24)

by means of

Y (n) �→
√

2n

n + 1
λN = 1

n + 1

(
In 0
0 −n

)
. (25)

For the case of SU(3) and Y (2) = Y , hypercharge, this reads as

Y = 1

3

( 1
1

−2

)
= 1√

3
λ8. (26)

We note also that the quadratic Casimir operator C(2) of SU(n + 1) is defined by

C(2) = XiXi. (27)

The normalization of its eigenvalues employed in this paper can be seen by reference either to
the defining irreps for which well-known properties of Gell-Mann lambda matrices [9] give

c2,(n+1)(def ) = 4
3 (28)

or else to the adjoint irrep ad,Xi �→ Fi, (Fi)jk = −ifijk where we have [9]

(XiXi)kl = fijkfij l = (n + 1)δkl (29)

so that

c2,(n+1)(ad) = n + 1. (30)

3. Dimension formulae and eigenvalues of Casimir Operators

From the Weyl formula, see e.g., equation (5.5) of [4], it is easy to learn that the class one
irrep Rλ = (λ, 0n−2, λ) of SU(n + 1) has dimension

dim Rλ = 2λ + n

n

(
λ + n − 1

λ

)2

(31)

so that, for λ = 1 and the irrep ad, we have

dim ad = n(n + 2) = (n + 1)2 − 1. (32)

Next we turn to the eigenvalues c2,(n+1) and c2,n of the quadratic Casimir operators C(2) of
SU(n + 1) and SU(n). The normalization of such results is seen by reference to the irreps ad

and (29). Accordingly, we use equation (4.11) and the first entry of table 7 of [4], adjusted to
our normalizations. In fact it is sufficient for the needs of this paper, to quote, for SU(n + 1),
the following, which contains a scalar product in its first two lines,

c2,(n+1)(f, 0n−2, g) = 1

2(n + 1)
(f n + g, f (n − 1) + 2g, . . . , 2f + (n − 1)g, nf + g)

(f + 2, 2, . . . , 2, g + 2)

= 1

2(n + 1)
[nf 2 + 2fg + ng2 + n(n + 1)(f + g)]. (33)

We need this first to obtain

c2,(n+1)(Rλ) = λ(n + λ) (34)

which reduces to (n + 1) for λ = 1 and R1 = ad, agreeing with (30).
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We need it also to establish a result crucial for introducing U(n) labels correctly into our
final CPn radial equation. This result is

4c2,n(f, 0n−3, g) −
(

1 − 2

n

)
(f − g)2 = h(h + 2n − 2) h = f + g (35)

and is important because the right-hand side depends on a single variable h, i.e., it depends on
the pair (f, g) only through the sum h = f + g.

The notation at this point, as previously, needs to be refined to accommodate the case of
n = 2. It also implies that the treatment to follow, of the separation of variables for (1) in the
general n case for n > 2, involves a complication absent in the degenerate case of n = 2. For
SU(3), and its class one irreps (λ, λ), we only need to know that the Casimir I2 of its SU(2)

isospin subgroup has eigenvalues I (I + 1), 2I (≡ h) = f + g, as (35) for n = 2 makes clear.

4. Review of CPn model

Following well-known lines dating back to the 1970s (see [6, 7, 10]), we set out from an
(n + 1)-component column vector Z(K) dependent on the complex quantities Kp, p =
1, 2, . . . , n, and given by

ZT = (LKi, L) L = L(K) = (1 + X)−1/2 X =
n∑

p=1

K̄pKp (36)

so that ZT Z = 1. The quantity Z(K) transforms under U ∈ SU(n) according to the law

Z(K) �→ Z(K ′) where UZ(K) = Z(K ′)V (U,K). (37)

Here V = V (U,K) serves to ensure that Z(K ′)n+1 = L(K ′) can be chosen to be real.
It follows (37) that the transformations of U(n) involving SU(n) and U(1) are realized

linearly while those whose generators lie outside the Lie algebra su(n) + u(1) are realized
nonlinearly, taking the infinitesimal form [6] on the variables Kp

δK = 1
2 i[ε − K(ε̄ · K)]. (38)

The route from (37) to the CPn Lagrangian is too well known to need review. It yields
the result

L = gpq̄K̇p
˙̄Kq (39)

where the CPn metric tensor is

gpq̄ = (1 + X)−1δpq − (1 + X)−2K̄pKq (40)

in its well-known Kähler form [11]. Proceeding classically at first, we define the canonical
momenta �p, �̄p, and obtain the Hamiltonian

H = gpq̄�p�̄q = (1 + X)[�̄ · � + (� · K)(�̄ · K̄)]. (41)

Next we consider the consequences of Noether’s theorem. Using the description of
SU(n + 1) transformations that follows (37), we can evaluate their generators in terms of
canonical coordinates, check Poisson brackets and show that to within an overall multiplicative
constant the classical Hamiltonian coincides with the expression in terms of canonical variables
for the quadratic Casimir operator of SU(n + 1). For our present purpose of treating the
Schrödinger of the CPn models, we need only expressions for the linearly realized generators,
associated with the U(n) subgroup, and the quadratic Casimir operator of SU(n). But we need
them first in terms of canonical variables and then, in practice, in terms of polar coordinates
and derivatives with respect to them.
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To avoid, perhaps only minimize, the inclusion of tedious detail, we refer explicitly here
only to the case of CP3 = SU(4)/U(3). This is sufficient to observe the pattern and attend to
the complication that exist for CPn beyond n = 2. We employ notation familiar in the particle
physics applications of SU(3). Thus we label SU(3) generators Xi which obey (23)

I± = X1 ± iX2 I3 = X3

Y =
√

3

2
X8 Y ≡ Y (2)

V± = X4 ± iX5 U± = X6 ± iX7.

(42)

In the context of SU(4), we have the independent complex variables Kp, p = 1, 2, 3, and
we express them in terms of polar coordinates via

K1 = r cos σ cos
θ

2
eiα K2 = r cos σ sin

θ

2
eiβ K3 = r sin σeiγ . (43)

The detail related to the embedding of the isospin SU(2) subgroup of SU(3) could have
been put more precisely into standard form by means of the definitions α = (φ + ψ)/2, β =
(φ−ψ)/2. Also the generalization from SU(4) to SU(n) should be evident from (43) because
of the resemblance of the σ, θ dependence to spherical polar coordinates.

The end results of a body of detailed calculations can be presented now

2iI3 = −∂α + ∂β 3iY = −∂α − ∂β + 2∂γ

2iI+ = e−i(α−β)

[
2i∂θ − tan

θ

2
∂α − cot

θ

2
∂β

]

2iV+ = e−i(α−γ )

[
i cos

θ

2
∂σ + 2i tan σ sin

θ

2
∂θ − tan σ sec

θ

2
∂α − cot σ cos

θ

2
∂γ

]

2iU+ = e−i(β−γ )

[
i sin

θ

2
∂σ − 2i tan σ cos

θ

2
∂θ − tan σcosec

θ

2
∂β − cot σ sin

θ

2
∂γ

]
.

(44)

Also for the U(1) generator Z = Y (3) for CP3, we have

iZ = −(∂α + ∂β + ∂γ ). (45)

The results (44) enable us to calculate the quadratic Casimir operator C(2) of the linearly
realized SU(3) subgroup of SU(4). We find

−4C(2) = −4

[
I2 +

3

4
Y 2 +

1

2
(U+U− + U−U+ + V+V− + V−V+)

]
= ∂2

σ + (cot σ − 3 tan σ)∂σ + 4 sec2 σ
(
∂2
θ + cot θ∂θ

)
+ sec2 σ

(
sec2 θ

2
∂2
α + cosec2 θ

2
∂2
β

)
+ cosec2χ∂2

γ +
1

3
(∂α + ∂β + ∂γ )2. (46)

We turn next to the evaluation of the Lagrangian L of (39) for CPn in terms of the
polar coordinates (43), in order to identify the components of the metric tensor gab, a =
r, σ, θ, α, β, γ , and pass thence to the quantum Hamiltonian

Hq = − 1
2g−1/2∂ag

1/2gab∂b. (47)

The question of the ordering of operators was discussed fully in [1]. Defining χ by means of
r = tan χ, 0 � χ � π/2, we are eventually led, after use of (46), to

Hq = −1

2

[
1

sin5 χ cos χ

∂

∂χ
sin5 χ cos χ

∂

∂χ
− cosec2χ

(
4C(2) − 1

3
Z2

)
− sec2 χZ2

]
. (48)
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The detail here is significant. The coefficient of cosec2χ has to emerge (as is seen in
section 5) in an exactly suitable form, dependent only on U(n) irrep labels (f, g) through their
sum, for the solution process of the radial equation to work. For the irreps (f, g) of SU(3),
with eigenvalue z = |f − g| of Y (3) = Z, which occur in the decomposition of the SU(4)

irreps (λ, 0, λ), according to (21) for n = 3, we have

c2,3(f, g) = 1
3 (f 2 + fg + g2 + 3f + 3g). (49)

Hence, we see directly, or else by reference to (35) for n = 3, that the coefficient of cosec2χ

in (48) is given by

h(h + 4) h = f + g. (50)

indeed dependent only on the sum h = f + g. This situation and the generalization of it for
CPn for general n enable the CPn radial equations to be solved in terms of Jacobi polynomials
in pleasing generalization of what we found in [1] for CP2.

If we now take the CP3 wavefunction in the form

�(χ, σ, θ, α, β, γ ) = T (χ)S(σ, θ, α, β, γ ). (51)

Here S denotes a spherical SU(3) eigenfunction with SU(3) irrep labels (f, g). This depends
on α, β, γ through the factor

ei(µ1α+µ2β+µ3γ ) (52)

from which the eigenvalues of I3, Y
(2) = Y, Y (3) = Z can be obtained. We find that the radial

factor T (χ) satisfies the equation

T ′′ + (5 cot χ + tan χ)T ′ − h(h + 4)

sin2 χ
T − z2

cos2 χ
T + 2ET = 0. (53)

The key property of the function S that has been used, in the passage from (46) to (53), is
simply the fact that it is an eigenfunction of the SU(3) Casimir operator C(2) with eigenvalue
given by (49). These eigenfunctions can be expressed in terms of the polar angles, or put
otherwise defined on the sphere S5, using polar coordinates related by Kp = rLp to our
variables (43), so that

∑3
p=1 L̄pLp = 1. Such spherical SU(3) eigenfunctions have been well

discussed in [12], although we do not need the details here.

5. Results for CPn

The pattern for general n can be directly inferred form the discussion of the case of n = 3
in section 4. Defining polar coordinates for CPn in analogy with (43), and using the change
r = tan χ of variable, we are led with the aid of the key result (35) to the equation[

d2

dχ2
+ [(2n − 1) cot χ − tan χ ]

d

dχ
− z2

cos2 χ
− h(h + 2n − 2)

sin2 χ

]
TIY = −2ETIY (54)

where h = f + g, and each pair (f, g) is associated with a class one irrep of U(n) with SU(n)

labels (f, 0n−3, g) and Z = Y (n) eigenvalue y(n) = z = |f − g|. The change

T = sinh χ cosz χR (55)

of dependent variable then gives rise to

d2R

dχ2
+ [(2h + 2n − 1) cot χ − (2z + 1) tan χ ]

dR

dχ
+ 2WR = 0 (56)

where

W = E − 2ρ(ρ + n) 2ρ = h + z = (f + g) + |f − g|. (57)
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Table 1. Data for the irrep R1 of SU(n + 1).

f g ρ z dim(f, g) m Eigenfunction

0 0 0 0 1 1 1 P
(n−1,0)
1

1 0 1 1 n 3 0 sin χ cos χ

0 1 1 1 n 3̄ 0 sin χ cos χ

1 1 1 0 n2 − 1 8 0 sin2 χ

This is an equation for R whose solutions are polynomials in cos2 χ , which may be given much
less conveniently in practice, in terms of cos 2χ . It is easy to solve (57) by hand obtaining
energy eigenvalues as conditions for the termination of solutions as polynomials of degree m,
as was done in detail in [1] for n = 2. However, we can compare (57) with an equation
satisfied by Jacobi polynomials P

(α,β)
m . Giving this initially in standard form [13]

(1 − x2)y ′′ + [(β − α) − (α + β + 2)x] y ′ + λmy = 0 (58)

where

λm = m(m + α + β + 1) (59)

and α, β > −1, we may change variable x = cos2 χ . This gives, for y(χ) = P
(α,β)
m (cos 2χ),

y ′′ + [(2α + 1) cot χ − (2β + 1) tan χ ] y ′ + 4λmy = 0. (60)

Comparison with (56) now provides the identifications

α = h + n − 1 β = z Wm = 2m(m + n + 2ρ). (61)

The subscript m has been applied to W here to emphasize its association with polynomials of
degree m. It now follows from (57) and (61) that the energy eigenvalue of (54) is

E = 2λ(λ + n) where λ = m + ρ. (62)

Hence, for CPn and given λ, we find a unique polynomial solution P
(α,β)
m of our radial

equation of each degree m such that 0 � m � λ, associated with each pair (f, g) allowed
by m = λ − ρ. This exactly enumerates the irreps of U(n) that occur in the decomposition
of the irreps (λ, 0n−2, λ) of SU(n + 1). Thus we find that the stated degeneracy structure of
the energy eigenspaces of the CPn Schrödinger equation has materialized via separation of
variables.

The values of the labels α, β of the P
(α,β)
m mentioned in the previous paragraph are given

by

α = f + g + n − 1 z = |f − g|. (63)

In the case of λ = 1, we have m = 0, 1. For m = 1, ρ = 0, so that only (f, g) = (0, 0)

in this case. For m = 1, ρ = 1, which allows (f, g) = (1, 0) = (1, 1) = (0, 1). This allows
us to observe each of the four irreps of U(n) known to occur in the decomposition of the irrep
R1 = (1, 0n−2, 1) = ad of SU(n + 1).

Finally, we display tables containing some detailed information regarding the two lowest
non-trivial energy levels of the CPn Schrödinger equation, for the values λ = 1, 2 (see tables 1
and 2). Column five of the tables gives dim(f, g) for general n, and column six gives results
for n = 3 and CP3 = SU(4)/U(3). In the latter case

R1 = ad dim ad = 15 R2 = (2, 0, 2) dim R2 = 84. (64)

Also column six gives radial eigenfunctions with a normalization in which the constant term
has been set equal to one. It is easy, as in [1], to produce orthonormal eigenfunctions,
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Table 2. Data for the irrep R2 of SU(n + 1).

f g ρ z dim(f, g) m Eigenfunction

0 0 0 0 1 1 2 P
(n+1,0)
2

1 0 1 1 n 3 1 sin χ cos χP
(n,1)
1

2 0 2 2 1
2 n(n + 1) 6 0 sin2 χ cos2 χ

0 1 1 1 n 3̄ 1 sin χ cos χP
(n,1)
1

1 1 1 0 n2 − 1 8 1 sin2 χP
(n+1,0)
1

2 1 2 1 1
2 n(n + 2)(n − 1) 15 0 sin3 χ cos χ

0 2 2 2 1
2 n(n + 1) 6̄ 0 sin2 χ cos2 χ

1 2 2 1 1
2 n(n + 2)(n − 1) 15 0 sin3 χ cos χ

2 2 2 0 1
4 n2(n − 1)(n + 3) 27 0 sin4 χ

orthogonality being a consequence of the Sturm–Liouville nature of the various separation
equations, e.g., (54).

In the tables, we note that the dimensions add up correctly

dim(1, 0, 1) = n(n + 2)
(65)

dim(2, 0, 2) = 1
4n2(n + 1)(n + 3)

and give the values 15 and 84 for CP3.
Also, we have

P
(f +g+n−1,|f −g|)
1 = 1 −

(
2ρ + n + 1

|f − g| + 1

)
cos2 χ

(66)

P
(f +g+n−1,|f −g|)
2 = 1 − 2

(
(2ρ + n + 2)

|f − g| + 1

)
cos2 χ +

(
2ρ + n + 2

|f − g| + 1

) (
2ρ + n + 3

|f − g| + 2

)
cos4 χ.

Results in the tables can be completed using (66) and 2ρ = h + z = f + g + |f − g|.

Acknowledgment

The research reported here is supported in part by PPARC.

References

[1] Macfarlane A J 2003 Complete solution of the Schrödinger equation of the complex manifold CP2 J. Phys. A:
Math. Gen. 36 7049–60

[2] Berger M, Gauduchon P and Mazet E 1971 Le spectre d’une variété Riemannienne (Lecture Notes in
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